Preprint typeset in JINST style - HYPER VERSION

The Cluster Crawler Suite Technical Manual

April 21, 2014

B. Baller¢

4 Fermi National Accelerator Laboratory, Batavia, IL 60510 USA

E-mail:paller@fnal .qgov]

ABSTRACT: The main features of the Cluster Crawler suite of algorithms are presented.

mailto:baller@fnal.gov

Contents

Introduction

CCHitFinder Algorithm

A
2
23

FitNG
Crude Hits
Study Hits

Cluster Crawler Algorithm

HOEHd B D008

RunCrawler

ClusterLoop

CrawlUS, LACrawlUS

B3 Kink Angle Check
AddHit, AddLAHit

B41 Charge Similarity Requirement
FitCluster, FitClusterMid
FitClusterChg

TmpStore, TmpGet

ChkMerge

B8 End-to-End Cluster Merge
ChkMerge12

DoMerge

28|
g2

ChkSignal
MergeClusterHits

Find Vertices

[
B2
B3

ClusterVertex
ChkVertex
VitxClusterSplit
B3 SplitCluster

CCHitRefiner Algorithm

BT

SetClusterBeginEnd

Configuring

Debugging

Technical Notes

HEEAE

HE B B BER HENGEHEBOE BEHE HBEHEEBEBEBoocwmwmaam

I0. Appendix 21

1. Introduction

Many methods for reconstructing two-dimensional line-like clusters of reconstructed hits use a
global metric for pattern recognition. The best example of this is the Hough line algorithm. The in-
tent of the Cluster Crawler algorithm is to construct clusters using local information. The “Crawler”
name is derived from the similarity of this technique to “gliders” in 2D cellular automata. The con-
cept is to construct short line-like “seed” clusters of proximate hits in an area of low hit density
where hit proximity is a good indication that the hits are indeed associated with each other. Addi-
tional nearby hits are attached to the cluster end if they are similar to the hits already attached to
the cluster. The term “leading edge” denotes the end of the cluster to which hits are being added
while crawling. Seed clusters are formed at one end of the hit collection so that crawling in only
one direction is sufficient.

Clusters are formed in a 2D plane of wire number along the abscissa and time, or more pre-
cisely TDC tick, along the ordinate. Hits are reconstructed on each wire by the hit finder algorithm
CCHitFinder. The relatively slow drift velocity of electrons through the wire planes, ~ 2mm/us,
results in a hit width in time of ~ 0.6s which is equivalent to a spatial width of ~ 1mm in the
main drift volume. Ionization from close particles will appear as a single “distorted hit” if their
separation is ~1 mm. As a result, the time of the reconstructed hit will be erroneous and may result
in poor cluster reconstruction.

The second member of this suite, Cluster Crawler, uses the physics of the passage of particles
through matter to identify and ignore poorly reconstructed hits. In addition to the hit time, hit
charge is an important discriminant for associating a hit with a cluster. The algorithm takes account
of the expected charge variation along the particle trajectory due to random dE /dx fluctuations and
the large increase in dE /dx near the end of travel of stopping particles.

Ionization electrons from a particle traveling parallel to the wire plane will arrive at approx-
imately the same time. The arrival time distribution depends only on their trajectory through the
wire planes and on diffusion. Hits constructed from this charge should all have similar area and
time. The charge is o< \/Amp x &. The arrival time of ionization electrons from a particle traveling
at some angle, 8, with respect to the wire plane will have a wider time spread and more charge will
be deposited on each wire but these hits will still be similar to those belonging to the same cluster
on neighboring wires. We use the term d7'/dW = “delta Time” / “delta Wire” to denote the tangent
of 0 (times a scale factor to convert into physical space coordinates).

The goal of the third member of the suite, CCHitRefiner, is to correct poorly reconstructed hits
made by CCHitFinder using information provided by Cluster Crawler. This information includes
2D vertices as well as clusters. CCHitRefiner is under development and is not ready for general
use. In principle, CCHitRefiner should enable reconstruction of very low energy particles with T <
20 MeV produced in neutrino interactions. The last function of CCHitFinder is to use the ratio of
charge at the two ends of the cluster to determine it’s direction.

The three algorithms are called by the producer module ClusterCrawler_module which places
the final set of hits, clusters and 2D vertices in the event record.

In this report, the preceding “f” on the text fVariable identifies it as a user-defined tracking
variable. Text in the t ypewriter font denote variables as they are used in the source code.

2. CCHitFinder Algorithm

Wire signals from induction and collection wire planes are converted into Gaussian-like shapes by
deconvolution in the CalWire module. The CCHitFinder algorithm differs from other hit finders by
the fitting method. Wire signals are fitted to one or more Gaussian distributions down to the noise
threshold fMinSig = fMinSigInd for induction planes or fMinSig = fMinSigCol for the collection
plane. The Gaussian fit y2/DOF is used to identify distorted hits - those that likely contain charge
from different particles. Deconvolved hits are not necessarily Gaussian in shape nor will they
be similarly (non) Gaussian in all wire planes. To minimize this problem, a vector of y2/DOF
normalization factors, fChiNorms, is input from the fcl file. The method for determining these
factors is described in the Study Hits sectionf.3.

CCHitFinder searches the wire signal for Regions Above Threshold, or RATs, on each wire.
A RAT is a contiguous block of ticks in which the signal, S, exceeds the threshold. Hits that lie
within the RAT will have a minimum time width of minRMS = fMinRMSInd (induction planes)
or minRMS = fMinRMSCol (collection plane), therefore the length of a RAT is required to exceed
2x minRMS. Bumps in the RAT are found by requiring S; > S;_; and S; > S;+; and S;—; > S;_»
and S;41 > Si42, where S; is maximum amplitude of the bump and 7 is the time of the maximum
amplitude. A “Crude” hit, described in section B.7, is created if the number of bumps exceeds
fMaxBumps. The bump times are put into to the bumps vector and passed to the fitting routine,
FitNG.

If the normalized y2/DOF of the fit exceeds fChiSplit it is presumed that more hits exist in the
RAT than there are bumps. Additional fits are performed with additional “hidden” bumps, until the
fit 2/DOF is less than fChiSplit or until fMaxXtraHits are included in the fit.

The reconstructed hits are stored in a temporary vector allhits of CCHit structs by the
routine StoreHits. This struct contains all of the information required to create a final hit that is
stored in the event, although in a somewhat different form than recob: : Hit. It also defines vari-
ables that will later be modified by ClusterCrawler and CCHitRefiner. For example, the existence
of a “multiplet” of hits in one RAT, that is allhits[].numHit > 1, is an indicator of either
closely separated tracks or a single highly-inclined track. allhits[].LoHitID is the index of
the lowest time hit in the RAT. This information is used by ClusterCrawler to merge hits on large
angle clusters as described in the next section. ClusterCrawler also sets allhits[].InClus to
the ID of the cluster it is associated with. A value of 0 indicates that the hit is not associated with
any cluster. A value < 0 indicates that the hit is obsolete.

2.1 FitNG

The RAT is fit to nGaus Gaussian distributions, where nGaus is the number of bumps found plus
the number of hidden bumps. The bumps vector provides an initial estimate of the Gaussian fit
parameters for the found bumps. The difference between the wire signal vector S and an expected

signal vector Seypee; (made under the hypothesis that there are bumps . size () bumps) is used to
estimate the parameters of the hidden bumps.

After fitting, the bump parameters are sorted in increasing time order. Quality checks are then
made to ensure that i) the fitted bump times are within the RAT boundaries, ii) the bump widths are
reasonable (0.5 * minRMS < fitted RMS < 5 * minRMS), iii) the bumps are not too similar in time
(8T > 2), and iv) all bump amplitudes exceed fMinSig. The fit y2/DOF is set large if all of these
conditions are not met.

2.2 Crude Hits

This routine is called when any type of fitting failure occurs. It creates a single crude hit from the
signals in a RAT. The charge-weighted mean hit time and rms are found. A crude hit amplitude is
then calculated using the formula £S;/(v/27 x RMS).

2.3 Study Hits

The StudyHits routine provides a mechanism for optimizing the settings for a specific detector
configuration. It need only be run when wire signals are expected to change, e.g. for a new detector
or if the deconvolution kernel is changed. The code is commented out for normal processing. The
first step prior to using this code is to identify a single real or MC event that contains a single
small angle track (dT /dW = 0). The assumption is made that the hit simulation has already been
adjusted such that the shape of simulated hits is the same as the shape of real detector hits. The
goal of StudyHits is to determine the values of fChiNorms, fMinRMSInd and fMinRMSCol such
that only one minimum-width hit is reconstructed by CCHitFinder on each wire along the selected
track. Experiment-specific code modifications may be required to ignore hits that are not associated
with the selected track, e.g. if an event with an isolated track cannot be found.

StudyHits is called five times while processing the event. The study vectors are initialized on
the first call. The routine is called a second time after a RAT is found on a wire and a determination
is made whether the RAT should be studied. The routine is called a third time after the first Gaussian
fit has been done. Statistics on the fit results are accumulated as well as information to allow
calculation of the cluster slope d7 /dW. The number of RATs that contain a single bump are
counted on the fourth call. StudyHits is called a fifth time after hit finding is completed to print out
the recommended values of fChiNorms, fMinRMSInd and fMinRMSCol. These values should be
entered into the fcl file and the event processed again to confirm that the newly entered values are
the same as the resulting recommended values.

3. Cluster Crawler Algorithm

Pattern recognition of lines is significantly simpler when the density of hits is low. High momentum
particles produced in beam neutrino interactions will likely survive well away from the interaction
where the hit density is generally lower than closer to the interaction. The region near the primary
interaction is troublesome for hit reconstruction because of overlapping charge depositions. The
approach used here is to fit very long clusters of hits to a line far from the primary interaction vertex,
downstream (DS) in the Wire-Time coordinate system, and extrapolate or crawl them towards the
upstream (US) primary interaction region. Hits associated with these clusters are then removed

from consideration when shorter lower-momentum clusters are reconstructed on subsequent passes
through the hit collection. The mechanism for selectively tracking high vs low momentum particles
is by fitting a large number of hits at the upstream end to a line on the first pass then fitting to a
smaller number of hits on the next pass.

Lower momentum particles have more curvature than higher momentum particles which will
result in incomplete clusters when they are reconstructed on the first pass. These are stored however
if they satisfy the length requirement for the next pass. The result after tracking a low momentum
particle will be an end-to-end series of clusters which have an apparent kink angle between them.
A routine is optionally called after every pass to merge clusters that have this signature.

The convention used in this document is that US (DS) is in the direction of decreasing (in-
creasing) wire number. Despite the inherent directionality of the algorithm, it should have similar
efficiency for reconstructing clusters in any direction, except for those particles that travel along
the drift direction.

The fcl inputs to ClusterCrawler are listed below. The values of these variables used for
MicroBooNE are shown in {}’s.

fNumPass Number of passes that are made through the hit collection. {3} B2

vector<fMaxHitsFit> Maximum number of hits that are fitted to a line on the leading edge of a
cluster. {20, 8, 4}

vector<fMinHits> Required minimum number of hits on a cluster produced on each pass. {20, 8,
3}B2

vector<fNHitsAve> Number of hits that should be used to define the average charge. {8, 8, 0} B4

vector<fChgCut> Maximum fractional hit charge difference between the average charge at the
leading edge of the cluster and a nearby hit on the next US wire. {0.65, 0.65, 0.7} B-4]]

vector<fChiCut> Maximum j? for tracking a cluster. {3.,3.,3.} B.

vector<fMaxWirSkip> Maximum number of wires (that have high charge nearby hits) to skip
over without adding a hit to the cluster. {25, 8, 3} B3

vector<fMinWirAfterSkip> Minimum required number of hits on consecutive wires that must
be added to the cluster after skipping a high charge region. {3, 2, 1} B3

vector<fKinkChiRat> Monitor the fractional x? increase of the last 3 cluster line fits at the US
end to identify kinks. If this condition is met, the kink angle is calculated and a cut is made
using fKinkAngCut. {1.2, 1.2, 0.} B3

vector<fKinkAngCut> Kink angle cut (radians) for cluster merging and terminating crawling.
{0.35,0.35, 0.4} B3

vector<fDoMerge> Boolean variable to perform cluster merging routine after tracking is finished
on a pass. {false, true, true} f]

vector<fTimeDelta> Maximum time difference at the matching wire for merging clusters. {2., 3.,
10.} @

vector<fFind Vertices> Boolean variable to find 2D vertices. {false, true, true}

fLLAClusAngleCut Use Large Angle cluster tracking code if the cluster angle with respect to the
wire plane exceeds this value (< 90°). Set to O to turn off Large Angle cluster tracking. {45}
B2

fCIHitMergeChiCut Merge hits in a multiplet if the hit separation y? is less than this value. Set
< 0 to turn off hit merging. {4.}

fClGhostHitFrac Merge ~parallel (Large Angle) ghost clusters if they share > this fraction of

hits in a hit multiplet. Set < 0 to disable merging ghost clusters. {-0.5}
fHitErrFac Factor to specify the hit time error for fitting = fHitErrFac * CCHit .RMS. {0.4}

B34
fAllowNoHitWire Number of allowed wires (that have no hits on them) to skip while tracking.

This allows tracking to continue when the LAr purity is low. {0}

fDebugPlane Print tracking information for this plane. Set < O for no printing. {-1}

fDebugWire Print tracking information for clusters that start on this wire. Set < O to print cluster
merging information. {0}

fDebugHit Print out tracking information for clusters for which the time of the most DS hit is
within £10 ticks of fDebugHit. Set < 0 to print vertex reconstruction information. {0}

The vector variables are those which may be altered on each pass. The length of the vectors
must be > fNumPass.

ClusterCrawler reconstructs temporary clusters and temporary 2D vertices in all cryostats,
TPCs and wire planes. These are stored in the vector tcl of ClusterStore structs and the
vector vtx of VtxStore structs respectively. Each cluster and vertex is assigned a “CTP” code
that is unique for each Cryostat, Tpc and Plane.

A cluster “Begins” at the most DS hit and “Ends” at the most US hit. The fc12hits vector
contains an ordered set of indices of hits on the cluster that is under construction. £c12hits[0]
is the most DS hit and fcl2hits[fcl2hits.size () —1] is the most US hit. Hits are added
to the leading end of a cluster with the push_back () std::vector member function. Only one hit
per wire may be assigned to a cluster. The following variables define the cluster under construction:

clpar Line fit parameters at the position of the US end wire, 7, and dT /dW .
clparerr Errors on the line fit parameters.

clChisq yx?/DOF of the last fit.

fAveChg Average charge of hits on the US end of the cluster.

fChgSlp Slope from the charge fit.

These variables are updated as hits are added to the cluster. When tracking of the cluster is
complete and meets the requirements for the current or next pass, it is stored in the tc1 vectorof
ClusterStore structs. ClusterStore has the following members:

ID Cluster ID (> 0).

ProcCode Code to identify the processor algorithm that created or modified the cluster.

StopCode Code to identify the reason for crawling termination.

CTP Cluster CTP code.

BeginSlp, BeginSIpErr d7/dW and error at the DS end of the cluster.

BeginTim Time of the cluster fit at the DS wire.

BeginChg Average charge of hits at the DS end.

EndSlp, EndSIpErr d7 /dW and error at the US end of the cluster.

EndTim Begin time of the cluster at the US wire.

EndChg Average charge of hits at the US end.

BeginVtx Index of the vertex at the DS end of the cluster. Set < 0 if no vertex associated with this
cluster.

EndVtx Index of the vertex at the US end of the cluster. Set < O if no vertex associated with this
cluster.

2D vertices are stored in the vtx vector of VtxStore structs. VtxStore has the following
members:

Wire Vertex wire number (in float precision).
Time Vertex time.

Wght Vertex weight.

Topo Vertex topology code.

CTP CTP code.

3.1 RunCrawler

RunCrawler loops over all cryostats, TPCs and planes. GetHitRange is called when the plane
number changes to initialize the WireHitRange vector<pair> where the first (second) element of
the pair is the index of the first (last) hit on each wire in the plane. A value of -2 for the first pair
element indicates that there are no hits on the wire. A value of -1 indicates that the wire is dead.
The O™ element of WireHitRange is the first wire, fFirstWire, in the plane that contains a hit. The
crawling algorithm jumps across dead wires but stops if a wire with no hit is encountered. The
variable fLastWire is the the last wire in the plane that contains a hit.

RunCrawler next calculates conversion factors that are used by the crawling routines and then
calls the crawling routine ClusterLoop.

3.2 ClusterLoop

The algorithm begins by searching for a short “seed” cluster consisting of three hits on three ad-
jacent wires. The search starts at fLastWire and ends at fFirstWire + 3. The hits must have not
already been included in a cluster or have been declared obsolete, i.e. allhits[].InClus #
0. The charge on the most DS hit should not exceed 2x the charge of the hit on the next US wire.
This requirement prevents starting a new cluster using hits that likely were produced from different
particles, e.g. a §-ray close to a muon. The rationale for using the factor of two is described in the
Appendix [[0.

The routine VtxConstraint is called to ensure that the seed cluster does not cross a vertex. The
three cluster hits are fitted to a line and a x? test performed. The cluster “Begin” wire, time, slope,
slope error and charge are stored in temporary variables.

Two crawling routines exist - one for small angle clusters, CrawlUS B3, and a variant for
Large Angle clusters, LACrawlUS) B.3. LACrawlUS is called if Large Angle cluster crawling
is requested, i.e. fLAClusAngleCut > 0 and the cluster slope exceeds the specified value. The
crawling routine projects the cluster under construction to the wires upstream of the leading edge,
adds hits, and re-fits the cluster parameters as necessary.

After crawling is complete, the routine QACheck is called to check the cluster quality. It clears
the fcl12hits vector if the cluster fails the requirements. The cluster is stored by the routine
TmpStore if 1) the number of hits is > the minimum number of hits required for the current pass,
fMinHits[pass], or ii) if the number of hits is > the minimum number of hits required for the next

pass, if pass < fNumPass - 2. The second, looser requirement provides a significant performance
increase.

After all wires and hits have been considered for the current pass, two routines are optionally
called. ChkMerge B.§ merges clusters created in all completed passes if fDoMerge[pass] is true.
FindVertices [is then called if fFindVertices[pass] is true.

After all passes through the hit collection are completed for the current wire plane, two routines
analyze and possibly modify the new set of clusters and vertices that were added. MergeCluster-
Hits f- merges close hits in a multiplet; those hits whose separation is < fCIHitMergeChiCut.
VixClusterSplit p.3 looks for a vertex that lies along the trajectory of a cluster. This situation may
arise when the vertex is created after the cluster is formed. If one is found, the cluster is split into
two - one US of the vertex and the other DS of the vertex.

3.3 CrawlUS, LACrawlUS

The crawling routines use the fc12hits vector to find the wire of the most US hit on the cluster,
the 1astwire. This routine iterates over all wires, nextwire, between the US end of the cluster,
lastwire - 1, and the US end of the hit collection, fFirstWire.

Crawling stops if CrawlVitxChk finds a vertex at the projected time of the cluster on nextwire.

A hit may be added to the cluster by AddHit B-4. AddHit sets the state of two Boolean vari-
ables. HitOK is set true if a hit was added. SigOK is set true if there is a hit signal at the projected
time of the cluster. Crawling continues if there is a hit signal even though no hit may have been
added to the cluster. This feature allows crawling through (and ignoring) a region where the charge
of the hits is much higher than the average charge of hits on the cluster. This situation commonly
occurs when tracking a muon through a §-ray shower. Hits in this region include charge deposited
by &-ray electrons and the muon and will likely be displaced from the muon trajectory.

If no hit was added to the cluster but there is a hit signal, the number of wires that have been
skipped without adding a hit are counted. Crawling terminates if this count exceeds fMaxWirSkip
[pass]. Crawling also terminates if the fit y? indicates that a failure occurred in AddHit. The
just-added hit is removed from the cluster, the cluster is re-fit and control is returned to CrawlUS.

If a hit was added and the fit y2/DOF is acceptable, the charge at the leading edge of the cluster
is updated by FitClusterChg B.8. The cluster is next checked for an abrupt change in direction, a
kink, as described in the next section.

The Large Angle version of this code, LACrawlUS, differs from CrawlUS in some respects.
Since hits on large angle clusters are usually a part of a hit multiplet as described in section [the
requirement of hit charge similarity is only made after all of the hits in the multiplet are merged
into one hit. A second difference is that a hit must exist on all wires of a large angle cluster - no
wire skipping is allowed.

3.3.1 Kink Angle Check

The kink angle check distinguishes between normal trajectory deviations due to multiple scattering
and deviations due to a hard scatter or secondary interaction. The kink check is performed in two
stages to minimize the number of calls to the trigonometric function atan () that is required to
calculate the kink angle. The first stage uses the stored values of the y? of all cluster fits that
were stored in the chifits vector by AddHit. The last entry made to the chifits vector is the

x2/DOF of the fit when the hit on nextwire was added to fc12hits. The first evidence for a
kink is a large systematic increase in the fit y2/DOF as the last few hits are added to the cluster.
Track wandering due to multiple scattering creates a systematic increase in y2/DOF as well but of
lesser magnitude. The variable fKinkChiRat[pass] is the first stage cut on the x?/DOF increase.
The first stage kink requirement is that the ratio of the s of successive cluster fits must exceed
fKinkChiRat[pass] for the last 3 fits. If this condition is met, the angle of the line formed by the
last 3 hits is compared with the line formed by the previous 3 hits. If the angle difference exceeds
fKinkAngCut[pass], the last 3 hits are removed from the cluster, the cluster is re-fit and control is
returned to ClusterLoop.

3.4 AddHit, AddLAHit

AddHit attempts to add a hit on a wire, kwire. It sets Hi t OK true if a hit is found and sets SigOK
true if there is a hit signal near the expected time. The cluster under construction is projected
to kwire to find the projected time, prtime, of a hit on the wire and the projected time error.
The rms width of the last hit added to the cluster is multiplied by an angle dependent factor and
fHitErrFac. This estimated hit error is added in quadrature with the cluster projection error to find
the total error, err. The first requirement for adding a hit is that the hit time be within £3 err of
prtime, in which case S1gOK is set true. A charge similarity cut is made next.

3.4.1 Charge Similarity Requirement

The charge of the hit is required to be similar to the charge of the previous hits added to the
leading edge of the cluster, fAveChg. This requirement can only be made after fAveChg has
been calculated by FitClusterChg B-§. A value of 0 indicates that the average charge has not yet
been calculated. The charge similarity requirement uses the normalized charge ratio, chgrat =
[(allhits[].Charge)—fAveChg|/fAveChg|[pass].

The similarity requirement is constructed to accept hits that are created by ionization processes
of the parent particle and reject hits that were created by other particles, e.g. daughters. The
requirement must allow for ionization fluctuations from wire to wire as well as the large increase
in the deposited charge at the Bragg peak when a particle stops in the detector. A charge cut,
fChgCut[pass], of ~60% captures the majority of hits produced by the parent particle. This cut
by itself will truncate the Landau distribution for minimum ionizing particles however. Figure
shows the dE /dx distribution of hits on through-going muons in the ArgoNeuT detector. The
average dE /dx is 2.3 MeV/cm and the rms is 0.8 MeV/cm which is 34% of the average dE /dx.
The low end of the distribution is at 1 MeV/cm which is 57% below the average. Setting the charge
cut to 0.65 should pass all low-charge hits on muon tracks. This cut will reject muon track hits with
dE /dx > 3.8 MeV/cm however.

This problem can be rectified by defining a higher charge ratio cut, bigchgcut = 1.5 *
fChgCut[pass]. The hit is allowed if the following conditions are met:

e The hit charge ratio is normal for the cluster, fabs (chgrat)) < fAveChg[pass].

e The hit charge is not too high, chgrat < 2.

e The hit charge is high, chgrat < bigchgcut, and the hit time matches the projected
time within +1.50 and the charge of the previous hit added to the cluster was not high.

Mean 2.204
i RMS 0.7849
%

=
70000 fll
60000 f
50000 fo
40000 ’I |
30000 [i
20000 '

10000 - _L‘;:’E \

[| PR e == s ! 1 1

80000

of hits

8 9 10
dE/dx (MeViem)

Figure 1. Distribution of dE /dx for through-going NuMI beam muons in the ArgoNeuT detector.

This cut allows high charge fluctuations on an isolated wire but rejects d-rays whose range
exceeds one wire spacing.

Note that crawling will continue to the next US wire if the hit fails these cuts since S1igOK is
set true. A similar two-stage threshold is applied to low charge hits to improve tracking efficiency
if the LAr purity is low. Crawling will terminate, i.e. S1gOK is set false, if low-charge hits are
found on two consecutive wires.

After surviving all cuts, the hit is then pushed onto the fc12hits vector and the cluster is re-
fitted by FitCluster B.3. The average charge at the leading edge of the cluster, fAveChg, is updated
by FitClusterChg B.q if the newly added hit has normal charge.

3.5 FitCluster, FitClusterMid

FitCluster fits the hits on the leading edge of the cluster under construction. The hit times, T;,
and wire numbers, W;, are fitted to a line using a weighted linear least-squares fit to two param-
eters - the time, clpar [0], at the wire on which the US hit of the cluster resides and the slope
dT /dW = clpar [1] where dW is the difference between the wire number of a hit assigned to
the cluster and the wire number of the most US hit. A maximum of fMaxHitsFit [pass] hits
in the fc12hits vector are fitted. The hit time error is multiplied by an angle dependent factor,
angfactor = 2 — 1/ (fabs(clpar[1])) which varies between 1 and 2.

Fitting is done by the LinFit routine adapted from Bevington[[ll]. The clpar parameters are
updated if the y2/DOF is < 99.

FitClusterMid fits a cluster that has been stored in the tc1 vector. It is used by routines that
merge or split clusters. A linear fit is performed on a user-defined number of hits, nhit, starting
athit ihtininthe tcl[].tclhits[ihtin]. The hits US (DS) of ihtin are fitted if nhit
is >(<) 0.

3.6 FitClusterChg

FitClusterChg calculates the average charge of hits, fAveChg, on the leading edge of the cluster
under construction. The calculation method depends on the value fNHitsAve[pass]. fAveChg is set

~10-

to the charge of the most US hit on the cluster if fNHitsAve[pass] = 1. It is set to the average of the
two most US hits if fNHitsAve[pass] = 2. These settings are used for short clusters.

If fNHitsAve[pass] is > 2, the charge of fNHitsAve[pass] hits, Q;, at the leading edge of the
cluster are fitted to a line with intercept fAveChg at the US wire and slope fChgSlp = dQ/dW.
The intent of this fit is to average the ~30% variation in the deposited charge. A simple average
is sufficient if there is little variation along the cluster, e.g. for minimum ionizing particles, but
is inadequate for stopping particles. The calculation must also allow for stopping particles travel-
ing either US or DS. The stopping power of stopping particles displays a power-law dependence,
dE /dx = AR, near the stopping point where the residual range, R, is small. The linear relation-
ship we use, fAveChg + (dQ/dW) x W, is a crude approximation to that but it is sufficient and is
computationally fast. The hit charge, Q;, and wire number, W;, is fitted to a line with a weighting
of 50% on the charge. The value of fAveChg is updated if y2/DOF < 20.

3.7 TmpStore, TmpGet

The function of these utility routines is to transfer the parameters of the finished cluster into (or
out of) the tc1 vector. A cluster ID is assigned by TmpStore. A check is made to ensure that the
cluster begin charge and end charge are defined. The InClus member of the CCHit struct is set to
the cluster ID.

3.8 ChkMerge

ChkMerge attempts to merge newly created clusters. The t c1 vector is searched for clusters having
the correct CTP code for the current cryostat, TPC and plane. Clusters that were declared obsolete
in prior merging operations are identified by tcl1 [1it1] .CTP < 0 and are ignored. ChkMerge
compares the “End” time, charge and angle of one cluster with the “Begin” time, charge and angle
of all other clusters. The cluster merging requirements are the same as those used for crawling,
i.e. fKinkAngCut[pass], f{ChgCut[pass], fMaxWirSkip[pass]. The two clusters may have been
produced on a different pass and therefore were subjected to different requirements. ChkMerge
decodes the pass for both clusters from tc1[] .ProcCode and uses the larger pass to define the
(looser) merging cuts - angcut, chgcut, skipcut, timecut.

The most common operation is merging clusters end-to-end. A less common situation is the
presence of a short cluster that is embedded within the boundaries of a long cluster. This more
complicated merge is done by a separate routine, ChkMerge12.

3.8.1 End-to-End Cluster Merge

Clusters are merged by the DoMerge [routine if all of the following conditions are met:

The separation between the ends of the clusters are < skipcut wiress, and

ChkSignal f]] finds a hit signal on all wires between the ends of the clusters, and

the Begin/End cluster angle difference is < angcut, and

the Begin/End charge ratio is < chgcut, and

the Begin/End time difference is < t imecut.

—11 =

3.8.2 ChkMergel2

Cluster pairs are considered for merging if the End wire of the shorter cluster is greater than the
End wire of the longer cluster and the Begin wire of the shorter cluster is less than the Begin wire
of the longer cluster. The two clusters must have similar slopes and times. The indices of the
clusters are passed to ChkMergel2 which compares the pattern of wires that have hits for the two
clusters. A gap in the wire occupancy must exist in the long cluster that will be completely filled by
the shorter cluster. If this condition is met, the longer cluster is re-fit near the two matching points
by FitClusterMid B.3. The clusters are merged by DoMerge if they have similar times, angles and
charge at the matching points.

4. DoMerge

DoMerge is a utility routine that merges two clusters that reside in the tc1 vector. The hit indices
from both clusters are transferred into a temporary vector of wires wirehit that functions like a
std::map. The hit-cluster assignment InClus is set to 0. The hit indices are then transferred in the
correct wire order into the fc12hits vector. The Begin cluster parameters are found by re-fitting
the cluster after 4 hits have been added to fc12hits. The End cluster parameters are found after
all hits have been transferred. The new cluster is then added to the tc1 vector by TmpStore. The
two original clusters are declared obsolete by setting their cluster ID’s negative. If a vertex exists
between the two original clusters, it is declared obsolete by setting vtx [] . Wght = -1. Lastly, the
cluster-vertex assignments for the old clusters are transferred to the new cluster.

4.1 ChkSignal

ChkSignal is a utility routine that checks for the existence of a hit signal between the points
(Wire;, Time;) and (Wirey, Time;). The Boolean variable SigOK is set true if there is a hit in
the vicinity of the projection of the line on every wire between wire; and wire;.

4.2 MergeClusterHits

In some cases, two close hits may be made by CCHitFinder even though only one should have
been reconstructed. For example, there should only be one hit reconstructed per wire for a small
angle highly ionizing proton. Instead, two close hits may be reconstructed if the hit fit y>/DOF
was greater than the hit splitting x?/DOF cut on the first fit. In this example, one of the hits has
high charge as expected for a proton and is attached to the cluster, while the other hit is just above
threshold and is not attached. The hit charge is therefore incorrect. MergeClusterHits inspects hit
on clusters for this signature and merges the close hit pairs.

5. FindVertices

2D vertices provide a constraint on cluster reconstruction and can in principle be used to improve
cluster reconstruction near the neutrino interaction vertex. The vertex finding algorithm does not
search for neutral interactions or decays. No user-adjustable cuts are provided. In addition to the
vertex position (Wire, Time) the vt x struct includes a vertex weight and a “topology” code that

— 12—

can be used to debug the vertex code. The appropriate cluster-vertex pointers tcl[] .BeginVtx
and tcl[].BeginVtx are updated when a new vertex is created.

Clusters in the t c1 vector that have the correct CTP code are sorted by the decreasing number
of hits in the routine cl2SortByLength. FindVertices first attempts to attach the cluster to an existing
vertex using the routine ClusterVertex [.1]. If that is unsuccessful, the (Wire, Time) intersection
point of the two clusters is calculated. The first level requirements for considering this to be a
vertex are:

Topology 1: Vertex US of both clusters

The angle between the End of cluster 1 and the End of cluster 2 is > 0.3 radians, and
the vertex wire is within the hit collection, > fFirstWire, and

the vertex wire is no more than 10 wires US of the End of both clusters, and

the vertex time is within the readout window of the TPC.

Topology 2 (3): Vertex in-between clusters

e The angle between the Begin (End) of cluster 1 and the End (Begin) of cluster 2 is >

0.3 radians, and
e the vertex wire iis between the Begin (End) of cluster 1 and the End (Begin) of cluster

2, and
e the vertex wire is no more than 10 wires US (DS) of the ends of both clusters, and
e the vertex time is within the readout window of the TPC.

Topology 4: Vertex DS of both clusters

e The angle between the Begin of cluster 1 and the Begin of cluster 2 is > 0.3 radians,

and
e the vertex wire is within the hit collection, < fLastWire, and
e the vertex wire is no more than 10 wires DS of the Begin of both clusters, and
e the vertex time is within the readout window of the TPC.

If these conditions are met, ChkVertex [.7 is called to compare the vertex with the set of
existing vertices, to perform further quality checks and to create a new vertex. After vertex finding
is completed, a check is made to ensure that both ends of one cluster are not assigned to the same
vertex. This error may occur when creating vertices from very short clusters. All vertices are then
re-fit by FitVtx to improve the vertex location. A weight is assigned, which is simply the number
of cluster hits (< 10) on all clusters that are associated with it.

5.1 ClusterVertex

ClusterVertex attempts to attach the Begin or the End of the cluster referenced by the index it
to an existing vertex. If the appropriate end of the cluster is within 2 wires of a vertex and the
projection of the cluster time at the vertex wire is < 10 ticks, ChkSignal 1] is called to check for
the existence of wire signals on the intervening wires. If that is successful, the cluster is associated
with the vertex by setting tcl[it] .EndVtx or tcl[it].BeginVtx to the vertex index and
the vertex position is re-fit.

13-

5.2 ChkVertex

ChkVertex compares the (Wire, Time) of a prospective vertex that was created with two clusters
with indices = 1t 1 and 1it2 with the list of existing vertices. If the prospective vertex is within
4 wires and 25 ticks of an existing vertex, an attempt is made to attach the clusters to the existing
vertex.

If the prospective vertex is found to be well separated from existing vertices, ChkSignal is
called to confirm that there are hit signals on every wire between the vertex and the appropriate
ends of the two clusters. A new VtxStore struct is created and pushed onto the vt x vector.

5.3 VtxClusterSplit

VitxClusterSplit splits clusters that cross vertices. This situation will arise when a high momentum
parent particle undergoes a secondary interaction, creating several daughter particles but leaving
the direction of the parent largely unchanged, i.e. 66 < fKinkAngCut[pass]. A cluster for the
parent particle will be created on the first pass before any vertices are formed from the daughter
particle clusters. VtxClusterSplit splits the parent particle cluster into two new clusters and makes
the proper BeginVtx and EndVtx association.

Loose proximity requirements are first made between all vertices and clusters that are not
assigned to that vertex to ensure that the vertex lies within the wire and time boundaries of the
cluster. The list of cluster hits, tcl[] .tclhits, is searched to find the wire with a cluster hit
that is closest to the vertex wire. The cluster is not split if one of the two clusters would have < 3
hits; instead the parent cluster is re-created with a few number of hits. Cluster splitting is done by
SplitCluster F.371.

5.3.1 SplitCluster

SplitCluster is passed a parent cluster index, a position in the tclhits vector where the split
should be made, and the index of an assigned vertex. The parent cluster Begin parameters are
transferred into the temporary tracking variables and the DS hit indices copied to the fc12hits
vector. The new daughter cluster End parameters are defined by calls to FitCluster and FitCluster-
Chg. The ProcCode of the parent cluster is transferred to the daughter cluster which is then stored
by TmpStore. The new vertex assignment is made to the daughter cluster EndVtx. The cluster
BeginVtx assignment of the parent cluster is transferred to the daughter.

A similar procedure is applied to hits US of the split position. In this case, the cluster End
parameters are unchanged and the cluster Begin parameters are re-fit. The ID of the parent cluster is
set negative to declare it obsolete. Note that the two TmpStore calls make the correct re-assignment
of hit-to-cluster.

6. CCHitRefiner Algorithm

The goal of the CCHitRefiner is to refine hits in important regions. The need for such an algorithm
is apparent by inspecting the hit and cluster reconstruction near the primary vertex of a QE neutrino
interaction as shown in Figure []. The lower cluster consisting of high-charge (green colored) hits,
is the proton. The upper cluster with lower-charge (yellow colored) hits, is the muon. The charge

_ 14—

of the muon hits on wires 2032 - 2036 is dwarfed by the proton ionization. This results in several
problems. The hits reconstructed on these wires have incorrect charge and time which will lead to
a biased measurement of the opening angle. One way of fixing this problem is to remove the hits
on wires 2032 - 2036 from the proton cluster and re-fit the End parameters. A second problem is
that low energy particles from nuclear break-up will not be reconstructed.

,
W
"
&
&

Il llllllllll llllllll]lllllllll]_ i

il

Figure 2. Hit and cluster reconstruction near a neutrino interaction vertex after processing by CCHitFinder
and ClusterCrawler. The event is a QE muon neutrino interaction.

U0 Ut oy e s 2040 Ml 2044 24 204
=0 T T T T T T T T

[
w

IN

IIIIlllIIIIIIIIIIIIIIIIII]III] L

26

TTT

e

Figure 3. The same event after processing by CCHitRefiner. The reconstructed vertex wire number is
2032.96, which is erroneously drawn at wire 2032 by the event display.

A second, more elegant way of attacking this problem is to improve the hit reconstruction in
the “region of confusion”, by using information from well-reconstructed hits just outside the region.
It is at this point that we wave our hands vigorously because the code is unfinished. The current
approach is to ignore the hits within this region since their fit parameters are biased. Instead, we fit
the signals on each wire in the region to different cluster - vertex hypotheses and select the best.

The main routine, RunCCHitRefiner, will loop over the vertices in each cryostat, TPC and
plane (when the code is finished). The current algorithm is:

1. FindRATRange finds a range of Regions Above Threshold, a “RAT range”, on each wire

near the vertex that contains the region of confusion
2. FillWireSignals stores the wire signals in the RAT range in a temporary vector of vectors
3. FillVcl re-fits the clusters associated with the vertex at the boundaries of the RAT range and

stores the cluster fit parameters in a temporary vector of structs, vcl.
4. FitVtxPos re-fits the vertex position using the vcl parameters.
5. FitHitamplitudes projects the time of all vc1 clusters to each wire between the RAT bound-

ary and the vertex. The amplitudes and times of hypothesized hit distributions for all clusters

on all wires is fitted to the actual wire signals.
6. RefineHits refines the parameters of existing hits using the fit information and creates new

hits if none exist.

— 15—

Fitting is done using ROOT TMinuit which requires the use of two external functions and an
external struct to pass data to the functions. The Minuit function fcnA is used for fitting the vertex
position and average hit signals on All wires in the RAT range. The function fcnW is used to fit the
amplitudes and hit times of all cluster hits on one Wire.

This rudimentary code shows some promise as one can see by comparing Figure P] with Figure
B. Hits were created along the extrapolated trajectory of the muon on wires 2033 - 2036. The
charge and charge uncertainty for these hits comes from the fitting procedure. The best fit for the
vertex position is (Wire = 2032.96, Time = 248.7). One can see that the vertex is very close to the
boundary between wires 2032 and 2033 by comparing the very large pulse height (red) of the hit
on wire 2033 with the very low pulse height (yellow) of the hit on wire 2032.

The last routine invoked by the Cluster Crawler Suite, SetClusterBeginEnd, is described in the
next section.

6.1 SetClusterBeginEnd

Many but not all particles produced in a neutrino interaction will travel DS. The cluster direction
can be inferred by comparing the charge at the Begin and End of the cluster if it is significant.
The user-defined parameter can be used to swap the Begin and End cluster parameters if the ratio
(BeginChg / EndChg) > BEChgRat (~ 2). Begin and End vertices are then swapped and the the hit
order reversed.

7. Configuring

The many input settings provide a considerable amount of flexibility which may create confusion
when configuring the settings for the first time. The recommended approach is to define the set-
tings for CCHitFinder first and only change them if one is under extreme duress. The StudyHits
procedure should help with this process.

For MicroBooNE, the general philosophy is to find through-going cosmic ray muons on the
first pass, find beam neutrino produced particles on the second pass and finally find low energy
protons from nuclear break-up on the third pass. One or two passes may be sufficient for other
detectors. Experience has shown that the algorithm is quite fast for events with little electromag-
netic activity. The computational cost of adding more passes is therefore not very high. Numerous
three-hit clusters will be created in events containing electromagnetic showers with energy greater
than a few GeV with the MicroBooNE settingsf. It is not clear that such clusters are useful in a
shower reconstruction algorithm.

After configuring CCHitFinder, one should configuring ClusterCrawler with one pass config-
ured for long clusters. The expectation for the LBNE far detector is that the very high energy
cosmic ray muons will produce large 6-ray showers that will necessitate setting fMaxSkipWire[0]
large. As a result fMaxHitsFit[0] must be set large so that the projection error through the §-ray
showers is small. The results can be analyzed quantitatively or qualitatively using the event dis-
play. Tracking “failures” can be traced using the method described in the next section and the
input settings adjusted. A second pass should be added only after the settings for the first pass are
optimized. It should be apparent that there is an element of the “butterfly effect” in the algorithm.

— 16—

Changing the settings in the first pass will produce quite different behavior in subsequent passes
but the resulting clusters should be very similar.

8. Debugging

Determining the cause of crawling failure can be difficult since local decisions are made on whether
to include a hit in a cluster on the basis of the history of previous decisions. The first level of
troubleshooting begins by producing a cluster summary report as shown in Figure f]. The report
lists all clusters in the order in which they were stored. The columns show the cluster ID, CTP
code, the number of hits in the cluster (nht), the Stop code, the processor (Proc) code, the Begin
Wire and Time on the cluster using the format W:T, Begin angle (radians) and angle error, the
Begin Charge. Similar information is displayed for the End parameters. The IDs of the BeginVtx
and EndVtx associated with the cluster are in the rightmost two columns. The meaning of the Stop
and Processor codes are shown in tables [l and B

Stop code | Meaning

No hits matching the criteria were found on the next wire
Skipped too many occupied or dead wires

Failed the fMinWirAfterSkip cut

Stopped at a kink

Failed the cluster x2 cut

Cluster split by VtxClusterSplit

Crawling stopped at a vertex

AN B W= O

Table 1. Stop codes.

’ Processor code ‘ Meaning

N (< 10) Produced on pass N
+ 10 Produced by cl2ChkMerge
+100 Produced by clChkMergel2
+300 Produced by LACrawUS
+1000 Modified by VtxClusterSplit
+2000 failed pass N cuts but passes N+1 pass cuts
+3000 Cluster hits were merged

Table 2. Processor codes.

A negative cluster ID indicates that the cluster is obsolete. The cluster was merged and as a
result, the hits on the cluster were subsumed in a newer cluster. The new cluster that subsumed
these cluster can be found by comparing the Begin wire and hit with clusters at the bottom of the
report. In the example report of Figure [, one can see that cluster 3, consisting of 63 hits with Begin
W:T = 1823:8768 was subsumed by cluster 32, consisting of 157 hits which was later subsumed
by cluster 56 consisting of 159 hits.

17—

Clustering done in plane O

vtx 0 wire 545 time 634 wght 26 topo 3

vtx 1 wire 991 time 8408 wght 16 topo 1
vtx 2 wire 1401 time 5848 wght 14 topo 4
beg W:T bTheta

ID CTP nht Stop

10
2
-3
4
-5
6
-7
-8
-9
10
11
12
-13
-14
-15
16
17
18
19
20
21
22
23
24
25
26
27
28
-29
30
31
-32
-33
-34
-35
-36
-37
38
39
40
-41
42
43
44
45
-46
47
48
49
50
51
52
53
54
55
56
57
58

cNoNoRololoBoNoNoNoNolNololololoNeoNoNoNolololololololoNolololNololololoNeoNoNololNoNololololNeoNoloNoNoNololololNeoNolNeNol

389
255
63
709
95
11
34
21
111
9

9
509
103
142
229
13
116

W WwWwoy W w1 0oy U1 W

=
(G206
DSOJ W

213
370
372
266

o
w
N

= N ~J
W oY Ot WD WO WD WO b www

=
oy U1 =
O O

6]

0

[N NeoRoloNoNoNeo YeolloNololoNoNoNeoh NeNoNolNololoNoNoNoNoNoNoNololoNoNoNoNoNoNoNoNoNolBoNoNoNoNoNoNoNoNololNoNoNoNeNel

Proc

3000
3000
0
3000
0
2000
0
0
0
5000
5000
3000

5000
3000
2001
2001
2001
5001
2001
5001
2001
2001
2001
2001
2001
2001
2001
2001

2075:
2017:
1823:
1800:
1760:
1754:
1666:
1627:
1606:
1580:
1571:
1543:
1476:
1373:
1229:
906:
545:
1822:
1802:
1756:
1428:
1407:
1398:
1379:
1370:
1316:
1160:
999:
993:
548:
529:
1823:
1666:
1606:
1373:
1373:
1666:
1666:
2041:
1732:
1710:
1674:
1579:
1558:
1533:
1469:
1420:
1401:
1397:
1392:
1239:
1157:
997:
533:
434 :
1823:
1469:
1400:

9568
5924
8768
8480
8741
5503
8698
8681
8672
3213
3207
6090
8617
8571
8508
108

633

8505
5594
8236
5526
5379
5854
6199
5208
8464
8430
8436
8408
643

661

8768
8698
8672
8571
8571
8698
8698
9441
8143
8721
8563
3209
8635
8628
4924
5491
5848
5875
5983
8799
8437
8424
643

1076
8768
4924
5862

O OO OO OooOo

[
O O O

OO O OO OOOoOoOo

.84
.41
.12
.15
.12
.40
.09
.12
11
.24
.28
.93
.12
11
.12
.62
.79
.47
.71
.34
.00
.32
.47
.78
.38
.09
.01
.08
.17
.66
.65
.08
11
.07
.05
.05
11
11
.39
.34
.22
.20
.41
.21
.17
.15
.40
.31
.46
.25
.50
.16
.89
.85
.62
.07
.15
.39

Therr begChg

0.
.02
.00
.04
.00
.62
.00
.00
.05
.00
.42
.01
.00
.00
.05
.23
.00
.00
.00
.00
.00
.72
.00
.00
.00
.00
.00
.00
.00
.08
.06
.00
.00
.00
.00
.57
.00
.45
.00
.00
.00
.00
.00
.64
.00
.00
.00
.00
.01
.24
.00
.17
.50
.09
.30
.00
.00
.03

cNoNoRoNoNoNoNoNoNoNoNoNoloNoNoNeoNoNoNoRolololoNoNoNoNoNoNoNoNoNoNoNoNeoNoNoNoNoNoNolBoNoNoNoNoNoNoNoNoRolNoNoNoNeNel

00

592
0
2219
401
195
619
310
253
709
52
52
52
202
228
714
18
860
701
834
696
331
756
655
714
1108
436
393
413
309
1442
9717
216
704
259
322
322
704
704
535
1399
1140
514
1181
353
407
1521
789
834
354
824
577
768
765
1208
578
378
1521
514

end W:T

1671:
1755:
1761:
1069:
1658:
:5519
1628:
1607:
:8616
1572:
1563:
1017:
1374:
1230:
994:
894 :
429:
1820:
1798:
18237
1423:
1402:
1395:
1375:
1367:
: 8465
1158:
: 8436
991:
546:
1667
1659:
1608:
1375:
996:
992:
1376:
993:
2038:
1730:
1708:
:8565
1576:
18640
1531:
1396:
1418:
16204
1395:
16243
: 8803
1153:
991:
: 737
:1082
1660:
:5854
1396:

1744

1477

1752

1314

994

527

1672

1554

1374
1374
1237

517

432

1401

7901
5502
8741
8916
8696

8683
8673

3204
3221
3410
8572
8509
8409
28

1075
8509
5585

5527
5369
5860
6193
5202

8430

8407
637

8697
8674
8571
8408
8407
8572
8408
9446
8146
8719

3205

8626

5936

5488

5949

8466

8407

8697

5936

Figure 4. Cluster summary report for plane 0.

— 18—

eTheta Therr endChg bVx

[
ecNoNeol SNeoNoNoNoNoNolNo]

| |
loNoNoNoNe)

cNoNoNoNoNoNoNolNoNoNoNoNoNel

(I 1 | L R B | | | |
PFRPRPOORPRORFRPRORREPEPEPORFEOOOOO

.84
.40
.12
.15
.12
.41
.12
.12
.11
.33
.41
.94
.12
.12
11
.07
.79
.47
.55
.15
.08
.48
.57
.41
.41
.09
.01
.06
.17
.66
.65
.12
.15
11
.12
.09
.09
.09
.39
.34
.22
.20
.41
.25
.17
.36
.40
.25
.46
.35
.50
.05
.55
.04
.62
.14
.32
.36

0.
.02
.05
.00
.03
.08
.05
.00
.00
.05
.04
.00
.00
.00
.00
.01
.00
.00
.00
.00
.15
.17
.00
.35
.27
.00
.00
.00
.00
.08
.06
11
.00
.00
.00
11
.00
.00
.00
.00
.00
.00
.21
.00
.00
.01
.00
.07
.01
.03
.00
.15
.00
.01
.30
.00
.00
.01

ocNoNeoNoNoNoNoRoNoNoNoNoNoNoNoloNoNoNoNoloNoNoloNoNoloholoNoNoloNoNololoNoNoNoNoNoNolNololNoNoNoNoNoNoNoloNoNoNolNolNe)

00

590
604
437
374
274
567
265
343
273
1444
1120
803
312
351
292
1133
1098
431
615
696
1800
1136
655
971
1108
286
219
769
528
1787
1372
429
271
308
294
518
282
312
535
1021
1394
536
1181
559
519
240
547
658
794
214
698
533
542
1585
1088
612
1760
240

-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99

0
-99
-99
-99
-99
-99

2
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99

2
-99
-99
-99
-99
-99
-99
-99
-99
-99

2

eVx

-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99

0
-99
-99
-99
-99
-99
-99
-99

1
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99
-99

1
-99
-99
-99

2
-99

The fcl inputs fDebugPlane, fDebugWire and fDebugHit trigger debugging mode. These vari-
ables serve several functions that are not apparent from their names. Debugging mode is turned off
by setting fDebugPlane < 0. Setting fDebugPlane geq O prints out all clusters in plane fDebugPlane
as in Figures [The cluster Begin (End) wire and time are printed using the nomenclature “W:T”
where W is the wire number and T is the time of the first (last) hit.

To trace the cause of a crawling failure one should identify the plane, wire and approximate
time of the first (most DS) hit on the cluster. Set fDebugPlane, fDebugWire and fDebugTime to
these values and re-run the job. If your estimate of the hit time of the first cluster hit is within +10
ticks of the actual hit time, a detailed crawling report will be printed to the screen. If your time
estimate was not quite correct, inspect the cluster summary report to find the closest Begin W:T
pair and enter the T value into fDebugTime. Re-run the job again to see the detailed report. It is
advisable to divert the screen output to a text file. The crawling decisions made at each wire and
hit are printed. It is left to the user to decide how the crawling settings should be adjusted.

= T T T T T T T L =
“U-'-'E_ —-—-_= - _E
R = l R— e
e il ég—— ' -gg
O — —

= JE- e g =)
e = s —=
a0 E— —
0 E— - —
000 E— —=
:ILU.IE— H . —E
LI; 1 1 | 1 1 1 | 1 | T R T | 1 1 1 | 1 1 1 | T | | I T T | | =

40 [ZET] L T 1200 1400 T JEITT] T
I T I I I T I I I T I

HEAD

ETS0

:
|IIII|IIII|IIII|-|-

| 3

g

L
i
i
\

I
|IIII|IIII|IIII|IIII|1’

g
(=
r

g

Z

g

g

E

i)
| E

i

4

@i—l |

g B

=In

Figure 5. An event with a poorly reconstructed cluster in plane 1 as indicated by the two-color line that
Begins near W:T = 1000:6200 and Ends near W:T = 800:5000 in the middle panel.

~ 19—

An example of a complex crawling failure is shown in the LArSoft event display in Figure
B. The top panel shows reconstructed cosmic rays in the first induction plane in the MicroBooNE
detector. The color-filled stars show the location of 2d vertices. Hits associated with a cluster have
the same color. The middle panel shows an enlarged view of a cluster at large drift time in the
region which appears to be broken, judging from the color change near wire 1660. The bottom
panel shows an extremely enlarged view in this region. The tan colored cluster entering from the
right tracks through the &-ray hits but then stops at wire 1660. Inspection of the cluster summary
report shows that this is cluster 56, which after several merging operations, Begins with hit W:T =
1823:8768 and Ends on hit W:T = 1660:8697. Cluster 3 was the progenitor cluster since it has the
same Begin W:T. One can tell that it was created on the first pass because the Proc code is 0 .

We next set fDebugWire = 1823 and fDebugHit = 8768 and re-process the event again. An
excerpt of the output is shown in Figure . The last hit added to the cluster was W:T = 1761:8741
as highlighted by the text "»ADD". Several lines below show CrawlUS looking for hits on the
next wire - 1760. AddHit reports that the projected time of the cluster is between 8736 and 8746
ticks. The average charge on the leading edge of the cluster is 437. "Chk " is the output from
AddHit testing each hit on the wire. The hit 1760:8741 has the correct time, but the charge is
108. The charge ratio is 75% less than the average charge and therefore fails the low charge cut.
This information can be used to investigate the root cause, e.g. poor modeling of muon dE /dx
fluctuations by Geant, poor algorithm in FitClusterChg for removing the fluctuations or use of an
incorrect value for fChgCut[pass].

>>ADD W:T 1762:8742 best 0.438477 clChisg 0.131091

CrawlUS: HitOK 1 SigOK 1

Kink chk 0.131091 0.126932 0.129578 0.125921

CrawlUS: next wire 1761

AddHit: prtime Lo 8737 Hi 8746 fAveChg 437

Chk W:T 1761:5508 InClus 2 mult 1 RMS 2.70664 Charge 679 LoTime 5502 HiTime 5514
Chk W:T 1761:8274 InClus 1 mult 1 RMS 3.27178 Charge 752 LoTime 8267 HiTime 8283
Chk W:T 1761:8502 InClus 0 mult 1 RMS 3.01799 Charge 452 LoTime 8496 HiTime 8509
Chk W:T 1761:8741 InClus O mult 1 RMS 3.07681 Charge 376 LoTime 8735 HiTime 8748
Best hit time 8741

ClusterFit W:T 1761:8741 1762:8742 1763:8743 1764:8743 1765:8744 1766:8744 1767:8744
1768:8744 .

nht 20 fit par 8741+/-2 0.455731+/-0.188722 clChisqg 0.0952881

>>ADD W:T 1761:8741 best 0.285156 clChisqg 0.0952881

CrawlUS: HitOK 1 SigOK 1

Kink chk 0.0952881 0.131091 0.126932 0.129578

CrawlUS: next wire 1760

AddHit: prtime Lo 8736 Hi 8746 fAveChg 437

Chk W:T 1760:5506 InClus 2 mult 1 RMS 2.74664 Charge 525 LoTime 5501 HiTime 5512
Chk W:T 1760:8270 InClus 1 mult 1 RMS 3.12321 Charge 613 LoTime 8263 HiTime 8278
Chk W:T 1760:8503 InClus 0 mult 1 RMS 3.01422 Charge 298 LoTime 8498 HiTime 8510
Chk W:T 1760:8741 InClus 0 mult 1 RMS 2.98173 Charge 108 LoTime 8737 HiTime 8746
Best hit time 8741

fails low charge cut. Stop crawling.

CrawlUS: HitOK 0 SigOK 0

No hit or signal on wire 1760

Check nAdjHit 3

CrawlUS done

Figure 6. Cluster trace report showing the last 2 hits added to cluster 3 in the cluster summary report.

~20-

To trace the cause of a merging failure one should set fDebugPlane to the appropriate plane
and set fDebugWire < 0. To trace the cause of a vertex failure one should set fDebugPlane to the
appropriate plane and set fDebugHit < 0.

9. Technical Notes

The code is written with the assumption that the wire number increases from US to DS. If the
wire number order is reversed in the detector, tracking will be reversed as well - away from the
interaction vertex instead of towards it. The tracking efficiency may be somewhat reduced as a
result.

The code is written with the assumption that hits are naturally ordered by increasing wire
number and increasing time.

10. Appendix

One needs to consider how the charge ratio requirement will affect the efficiency of finding seed
clusters for stopping particles. A stopping particle deposits significant energy in the last mm of
travel. If the particle is traveling DS, the charge ratio cut may prevent inclusion of the first, most
DS, hit in the cluster. To evaluate this, we track idealized stopping protons with kinetic energy in
the range 25.7 MeV < T < 30.38 MeV. Tracking is done in an Excel spreadsheet, available from
MicroBooNE document data base #2975. These initial energies were selected so that the proton
range varies between 9.09 mm and 12.00 mm - which is within the fourth and last wire cell of a
TPC with 3 mm wire spacing. When T = 25.7 MeV, the proton traverses 3% of the last wire cell
and has a stopping power of 160 MeV/cm when it enters the fourth cell but the energy deposited
in that cell is only 0.5 MeV. A proton traveling 99% of the way through the fourth wire cell enters
with a stopping power of 38 MeV/cm and deposits 11 MeV of energy. In Figure [], we compare the
ratio of the energy deposited in the last two cells, Egepa/Egep3. The charge ratio, Qgepa/Queps. Will
have a somewhat smaller slope due to the effects of recombination. On the other hand, the charge
ratio will be sensitive to ionization fluctuations. It is for these reasons that the charge ratio for the
first two hits on a seed cluster be less than two.

16
14 //
12
7 /
E 0.8
04 1
0.2 //
0

o 02 04 06 038 1

Fraction of last wire cell

Figure 7. Ratio of the energy deposited on the last wire to the energy deposited on the next US wire for
a proton traveling DS vs the fraction of the distance traveled by the proton in the last wire cell. The wire
spacing is 3 mm.

21—

References

[1] P. Bevington, 1969, Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill.

20

